环保政策再度收紧,催化材料迎来新一轮机遇

来源:https://mp.weixin.qq.com/s/JDmQvppL5YT4Ak5M2ro61A    日期:2019-5-6    浏览次数11

 特别申明:本新闻内容由第三方提供,只作为行业技术探讨,我方不对新闻内容承担任何责任。

环保政策再度收紧,催化材料迎来新一轮机遇

Matplus 2月18日
 

2019年2月11日,北京市生态环境局在官网发布了《关于北京市实施第六阶段机动车排放标准的通告(征求意见稿)》

 

征求意见稿主要内容如下:

 

一、自2019年7月1日起,在本市销售和登记注册的重型燃气车以及公交和环卫行业重型柴油车须满足国六b阶段标准要求。自2020年1月1日起,在本市销售和登记注册的轻型汽油车和其余行业重型柴油车须满足国六b阶段标准要求。

 

二、凡在本通告规定的标准实施日期之前已购买的(以购车发票日期为准)和已从外省市转出迁往本市的(以机动车登记证书的转移登记日期为准)符合第五阶段排放标准要求的车辆,在本通告规定的标准实施日期之后的一个月内可继续办理车辆注册登记手续,逾期不再办理。

 

三、请各机动车销售单位提前组织安排好销售计划,认真贯彻国家第六阶段机动车污染物排放标准要求,落实销售主体责任,在经营场所明示本通告的有关内容,向购车者告知有关规定。对于在本通告规定的标准实施日期之后销售不符合国六b排放标准车辆的,由市场监管部门依法追究法律责任。

 

四、为保证第六阶段机动车排放标准的顺利实施,本市相关部门要严格把关,对不符合本通告要求的车辆,北京市公安局公安交通管理局不予办理车辆注册登记手续

提前实施“国六”彰显环保担当

 

何谓“国六”?顾名思义,即国家第六阶段汽车排放标准。根据环境保护部2016年发布的《轻型汽车污染物排放限值及测量方法(中国第六阶段)》可知,“国六”排放标准将于2020年7月1日起全面执行。

 

另据相关文件,“国六”排放标准实施后将分“国六a”和“国六b”两个阶段,分别于2020年7月1日和2023年7月1日开始执行,在部分排放标准上,“国六b”要比“国六a”严格1倍多。而如今,北京市拟提前实施“国六”,与规定时间相比有明显提前,足见北京在环境保护方面有诚意,更有行动。

 

去年6月,国务院发布《关于印发打赢蓝天保卫战三年行动计划的通知》。通知明确指出,打赢蓝天保卫战,是党的十九大作出的重大决策部署,事关满足人民日益增长的美好生活需要,事关全面建成小康社会,事关经济高质量发展和美丽中国建设。进一步明显降低细颗粒物(PM2.5)浓度,明显减少重污染天数,明显改善环境空气质量,明显增强人民的蓝天幸福感是全体人民的诉求。特别是一些污染较为严重的地区,更有理由提前实施“国六”。

据测算,提前实施国六排放标准,对于轻型汽油车,一氧化碳、碳氢、非甲烷总烃和氮氧化物排放将比国五阶段降低50%左右,颗粒物排放降低40%左右;对于重型柴油车,氮氧化物和颗粒物将比国五阶段降低60%以上。这可量化的成效,一旦付诸实践,将实打实地减少污染排放,更明显地促进空气质量改善。

 

“国六”和“国五”的区别

 

众所周知,全国目前通用的汽车排放标准是“国五”,从“国一”到“国六”,排放标准越来越高,要求也越来越严格。

通过上图,我们可以直观地了解到国六与国五的具体区别。丰富的内容体现了此次机动车排放标准的升级并非小修小补,而是着眼于未来的重要改革。

具体到每一种排放物我们可以看出,相较于国五而言,国六阶段,各种排放物的标准都进行了修改,而且新增了粒子数量和氧化二氮的限制要求,同时国6b阶段还会更加严格甚至比欧洲的一些排放标准还要严格

 

仅仅通过提升发动机技术,就想要达到排放标准是不现实的,机动车需要通过综合优化途径才能够达到国六的要求,也就是通过发动机+氧化催化器(DOC+颗粒捕捉器DPF等综合一体化改进(部分是加装)来达到国六标准的。

汽车尾气催化器

环境问题是一个全球问题, 要靠全世界每一个人的努力来解决。在我国, 汽车尾气净化是解决尾气排放污染的最有效方法。汽车排放的污染物主要来源于内燃机,其有害成分包括一氧化碳(CO)、碳氢化合物(CH)、氮氧化合物(NOx) 、硫氢化合物和臭氧等,其中CO、HC及NOx是汽车污染控制的主要大气污染成分。汽车尾气对人类的健康危害很大,治理汽车排放污染,已成为一项刻不容缓的任务。

 

汽车尾气污染控制可以分为机内和机外两种技术。机内净化主要是提高燃油质量和改善燃料在发动机中的燃烧条件,尽可能减少污染物的生成(比如使用国六标准汽油);机外净化的主要方式是安装催化净化器,而催化剂的选择和使用则是净化效果的关键。因此,开发实用高效的汽车尾气净化催化剂是控制汽车尾气排放的最佳措施之一

 

国五标准全面实施不到三年,国六标准就已经近在眼前。更加严格的排放标准下,汽车尾气催化剂也将迎来新的变革和市场机遇

 

汽车尾气催化剂的研究现状及发展前景


汽车尾气催化剂的研究开始于上个世纪60年代,目前己达到实用阶段。研究表明,通过改善催化剂及其载体的性能和生产工艺,改善汽车内燃机燃烧技术及三效催化剂排气系统的处理可净化这些有害气体。

1960年美国加州率先制定“汽车污染物控制法案”,1968年美国联邦制定“空气清洁法案”,1966年日本、随后欧洲都制定了有关法律和标准。我们排放控制起步较晚,1981年才开始制定排放标准。

 

汽车尾气净化的方法

 

汽车尾气催化净化的目的就是将有害的CO和HC氧化为CO2H2O,将NOx还原成N2。由于汽车尾气的化学成分很复杂,其转化率除和催化剂的活性有关外,还和反应气是氧化气还是还原气有关,因此催化剂在功能上分为氧化型和还原型两部分。氧化型催化剂主要催化CO和HC的氧化反应,还原型催化剂主要催化NOx的还原反应有关反应如下图:

NO和H2反应除生成无毒的N2H2O外,尚有所不希望发生的副反应:

2NO+5H2=2NH3+H2O

2NO+H2=N2O+2H2O

因两种反应要求的化学环境不同,故早期的催化剂将两者分立。后来由于发动机的改进,实现了可使两种功能兼容的化学环境;由于催化剂制备技术的改进,使氧化与还原两种活性中心共存于同一个催化剂上,最终出现了三效催化剂TWC(three-way catalyst)。目前最常用的催化器是使用蜂窝型催化(honeycomb catalyst),载体是陶瓷蜂窝体,其外附载有高比表面积的氧化铝涂层,其上再浸渍活性组分。所以,汽车尾气净化催化剂主要由载体、涂层及活性物质三部分组成。

 

催化剂种类和材料

 

1. 氧化型催化剂

 

20世纪70年代中期到末期的汽车排放法规只要求控制CO与CH的排放,发动机尚未使用化油器开环系统,由于机械地固定A/F比到理论值,不能随工作状况的变化而自动地调节,在这种状态下,通过将A/F比调到15左右,在富氧状态下装上氧化型催化剂,可使CO与HC的转化率达到90﹪,但NOx的转化率比较低。这一时期使用的主要是贵金属型催化剂,以铂、钯为活性组分。通常以二者形成的合金态使用,铂:钯=7:3,总载量0.12﹪左右。贵金属催化剂有致命的弱点,那就是它怕铅中毒。因此,为了有效地使用贵金属催化剂,必须改变燃油的结构,实行汽油的无铅化。

2. 双金属催化剂

 

20世纪70年代末到80年代中期,随着美国EPA提出对NOx的排放实行控制,氧化型催化剂己不能满足要求。出现了铂、铑三效双金属催化剂。20世纪70年代末至80年代初出现的是双床式铂、铑催化剂,催化剂的氧化还原反应是分段进行的,前段使用还原型蜂窝催化剂,后段使用氧化型蜂窝催化剂,两段中间补充空气。这种设置可使还原反应与氧化反应分别在有利于自身的化学气氛中进行,但该种催化器结构复杂,操作麻烦,且NOx还原后有可能重新被氧化。1980-1985年,Pt-Rh三效催化剂开始用于电喷闭环装置,将A/F控制在窗口范围内,CO、CH和NOx的转化率可达80-90﹪以上。典型催化剂的Pt-Rh总负载量为0.1-0.15﹪,Pt:Rh=5:1涂层中加入碱土和稀土元素,稳定催化剂结构并与贵金属协同产生卓越的储氧功能。但在高温时,Rh与表面涂层中的Al2O3CeO2发生化学作用,导致催化剂在还原气氛时对NOx的还原活性下降。

 

3. 三金属催化剂

 

20世纪80年代中期到90年代初,开始使用新一代的Pt-Rh-Pd三效催化剂。这一代催化剂相当于在一个Pd催化剂上再安置一个标准Pt-Rh催化剂。此结构中,钯在内层有更好的耐热稳定性;铑在外层更有利于NOx的还原;铂在钯铑间起积极的协调作用。故催化剂的性能有了明显改善。随着汽油质量的提高,催化剂的使用寿命也大大延长,且每升催化剂中贵金属的总量已下降到0.6-0.8g。据介绍,Engelhard开发的Tri-Metal催化剂在使用16万公里后,转化率仍可达CO 85﹪,HC 90﹪和NOx95﹪,显然可满足更高的环保要求。

 

4. 三效钯催化剂

 

20世纪80年代末,福特公司推出了三效钯催化剂,这种钯催化剂要求氧化铝和稀土氧化物与过渡金属氧化物形成有机的协和体,钯在其中发挥主导作用,通过采用特殊措施使材料具有特定结构从而使高温下的活性得以稳定。实验表明,单独Pd基催化材料在1200的热冲击下,催化活性依然良好。目前,这种催化剂还在进一步研制之中。Englhard公司研制了一种双层Pd基催化材料。底层由Pd和Ce构成,顶层由分散于涂层上的Pd构成。两层中都添加廉价金属氧化物以产生稳定作用,并提高Pd的活性。顶层提供低温催化活性;Pd-Ce层提供高的储氧能力以保证高温催化活性。Pd在423-823温度范围内对,HC、CO和NO的同时转化具有活性。


5. NOx存储还原型三元催化材料

 

这种催化材料由贵金属、碱金属或碱土金属、稀土氧化物组成。基本原理是:富氧条件下NOx首先在贵金属上被氧化,然后与NOx存储物发生反应,形成硝酸盐。在理论比或富燃状况燃烧时,硝酸盐分解形成NOx,然后NOx与CO、H2HC反应被还原成N2。研究表明,NOx的存储能力与氧的浓度有关。氧浓度增加,NOx存储能力提高。当氧浓度达到1﹪以上时,NOx存储能力基本不变。此外,HC选择还原催化材料在富氧条件下也具有较好的催化活性。

 

国内研究现状

 

我国汽车尾气污染控制是从上世纪80年代中期开始的,我国高等院校和院所在汽车尾气污染控制方面作了大量前期基础研究工作,并且研究开发了能够符合我国国情的汽车尾气控制有效的产品,为减少汽车尾气作出了贡献。

 

1. 非贵金属催化剂

 

我国许多研究工作者在1990年前后对非贵金属和稀土等混合氧化物为活性组分的汽车尾气净化催化剂进行了研究。通过组分特别是稀土元素合理搭配,可产生协同效应,具有良好的催化活性和一定的三效性能。

 

含稀土钙钛矿型催化剂研究是汽车排气催化剂领域的一个热门课题。我国科研人员在这方面作了很多研究。如1988年,王道等用浸渍法制备了一系列负载钙钦矿型La(Cu,Mn,Co)O3/LaAlO3-Al2O3催化剂,并经实验研究表明其活性较高。1993年,许开立等还研制成净化柴油机尾气的钙钛矿型催化剂,活性优于Pt族贵金属催化剂,且具有强抗SO2抗积碳性能。顾其顺等研究成以陶瓷蜂窝涂活性氧化铝为载体,活性成分为稀土复合氧化物的,HR-1型催化剂。后又添加稀土元素稳定氧化铝涂层结构,是一种较好的三效催化剂。2001年,韩巧凤等用PFG法制备了钙钛矿LaMnO3纳米材料,并将其负载在涂有Al2O3的堇青石载体上作为净化汽车尾气的催化剂,研究发现纳米晶活性组分的分散度好、粒径小、表面积大,对汽车尾气催化效率比溶液制得的催化剂好。

2. 贵金属催化剂

 

鉴于贵金属催化剂Pt、Rh价格昂贵,资源十分短缺,Pd与之相比是较廉价及丰产的贵金属,使用Pd替代或部分替代Pt和Rh。国内研究者开展了以Pd为主要活性组分的研究及致力于改善制备工艺、添加助剂、用非贵金属代替部分贵金属以减少贵金属用量的研究。含钯催化剂最常用的助剂是稀土氧化物、碱土金属氧化物和过渡金属氧化物。黄传荣等对La-Co-Ce-Pd催化剂活性和热稳定性的研究表明稀土元素, La、Ce在催化剂表面的富聚和在活性氧化铝涂层中的存在,对其它活性组分特别是贵金属Pd起到分散、隔离和稳定的作用,使之不易迁移、煤结和流失,保证了催化剂良好的热稳定性。郭清华等在含Pd催化剂中涂层中添加Ce,Ba同样对Pd组分起到分散、隔离和稳定结构的作用,从而达到改善催化剂热稳定性的作用。另外也有对Rh及Ag催化剂的研究。负载Pd催化剂虽具有较高的催化活性和较好的低温活性,但抗烧结和抗硫中毒能力较差,特别是对NOx净化性能难以达到实用要求。

汽车尾气净化催化剂结构组成

 

汽车催化剂主要由四个部分组成:载体、高比表面的涂层、活性组分和助剂。

 

1. 载体

 

催化活性组分要担载在高比表面的载体上,才能很好的发挥作用,载体的选择对催化剂活性有很大影响。早期的载体是以活性氧化铝、硅氧化镁、硅藻土为原料制得的颗粒物,表面积大,使用方便,但存在压力降和热容大、耐热性差、强度低和易破碎等缺点, 故80年代后逐渐被蜂窝陶瓷载体所取代。蜂窝陶瓷载体也叫作整体载体,由许多薄壁平行小通道构成整体, 具有气流阻力小、几何表面大、无磨损等优点。堇青石载体由于热膨胀系较低,抗热冲击性突出而被广泛用作汽车尾气催化剂的载体。目前所用的汽车催化剂的载体95%为蜂窝堇青石陶瓷体,其原材易得、费用较低以及总体性能良好。另一种整体式载体是将Ni-Cr、Fe-Cr-Al或Fe-Mo-W等合金压成波纹状而制成的整体型合金载体,相比陶瓷蜂窝载体有更高的热稳定性。目前这种金属载体主要用于对汽车尾气排放要求十分严格的国家,如日、美的出口汽车上。金属载体的使用对降低汽车排气阻力十分有利明显改善了动力性能,提高尾气净化效率,同时延长了净化器的使用寿命。

 

2. 高比表面的涂层(也叫第二载体) 

 

活性涂层附着于载体的表面,它的作用是提供大的表面积来附着贵金属或其它催化成分。堇青石载体的比表面较低, 一般只有1m 2 /g左右, 须涂敷一层高比表面的涂层。涂层材料通常采用γ-Al2O3,它具有很强的吸附能力和大的比表面积,但在高温条件下会发生相变,转变为α-Al2O3,比表面积降低。为了抑制Al2O3 的相变,通常加入Ce、La、Ba、Sr、Zr等稀土元素或碱土元素氧化物作为助剂。

高比表面积的氧化铝电镜照片

 

3. 活性组分


尾气催化剂的活性组分可分为贵金属和非贵金属两种类型。

 

贵金属类以Pt、Rh、Pd最为常用。Pt组分在催化剂中主要起氧化CO和HC的作用,它对NO有一定的还原能力,但CO的浓度就较高或有SO2 存在时, 它的效果没有Rh好。Rh组分是催化还原NOx的主要成分,在有氧时,得到唯一的还原产物N2无氧时,低温下的主要还原产物是NH3,高温下的还原产物主要为N2。此外,Rh对CO的氧化和烃类的水蒸气重整反应也有重要作用,Rh的抗毒型较Pt差。Pd组分主要用来转化CO和烃类,对于饱和烃类效果稍差,抗Pb、S中毒能力差,易高温烧结,与铅形成合金,但它的热稳定性较高, 起燃性好。汽车尾气三效催化剂中, 各种组分的作用是相互协同进行的。非贵金属活性组分主要以过渡元素氧化物及其尖晶石、钙钛矿结构复合氧化物为活性组分。但由于单组分氧化物耐热性能差、活性低、起燃温度高,在使用上受到限制,一般采用多组分的配方和适当的制备技术。

 

4. 助剂

 

助剂本身是一些没有催化作用或活性较低的添加物, 能大大提高催化剂的活性、选择性和寿命。CeO2 是汽车尾气净化催化剂最主要的助剂, 其主要作用有:贮存及释放氧;提高贵金属的分散性, 抑制贵金属颗粒与Al2O3 形成无活性的固溶体;提高催化剂的抗中毒能力; 增加催化剂的热稳定性等。Summers和Ausen对铈和贵金属的相互作用进行了研究,在Al2O3担载的新鲜的Pd、Pt贵金属催化剂中,增加CeO2的量,Pt的表面分散性下降;而Pd的表面分散性与CeO2的负载量无关。


汽车尾气净化催化剂的发展方向

 

1. 贫燃条件下的NOx 催化转化

 

贵金属三效催化剂只有在发动机的空燃比接近化学计量比(14.7/1)且使用无铅汽油时才能有效净化三种污染物CO、HC、NOx。当空燃比低于14.7时,处于富燃区,催化剂具有高还原性、低氧化性, CO和HC净化不完全;而高于14.7时处于贫燃区,尾气中氧含量较大,而CO和HC含量很低,催化剂具有高氧化性、低还原性, 不能有效还原NOx 。因此应开发贫燃条件下的新型汽车尾气净化催化剂已成为当前的研究热点,此种催化剂一旦研究成功,将在柴油发动机和贫油型汽油发动机的车辆上得到广泛应用。对已排放到大气中的NOx , 特别是大城市中峡谷式的街道和隧道等大气扩散条件较差的地带, 为了降低NOx浓度有人提出了利用TiO2光催化所具有的高氧化能力和还原能力,将TiO2 混在建筑材料中,涂在建筑物的外壁,再有O2 H2O共存条件下,将氮氧化物变为NO3-, 因为这种具有高活性的四配位结构的TiO2分子筛催化剂,经过注入金属离子后,TiO2催化剂能够有效的利用可见光和太阳光。


2. 开发非贵金属催化剂

 

贵金属三效催化剂是目前较流行的汽车尾气净化催化剂,但贵金属价格昂贵,又容易发生Pb、S、P等中毒,还可能对环境造成二次污染,如产生N2O气体,而N2O是主要的温室气体之一,因此寻找新型催化材料部分或全部替代贵金属已成为必然趋势。非贵金属催化剂价格远低于贵金属,但其催化活性比贵金属低,需要制成特殊结构,而且要多种金属组分相互作用来提高活性。目前研究最多的是用稀土元素作为活性组分,但因稀土催化剂性能不及贵金属催化剂,如活性、稳定性等,故要解决很多技术问题。稀土催化剂主要有钙钛矿型、特殊的镧复合物、特殊的铈复合物、含铜镍的稀土金属和硝酸盐等;其次为过渡金属作为主要成分的催化剂, 其中CuO 、MnO2 Co2O3 等对CO 的氧化活性较高,NiO和Cr2O3 NOx 的还原活性较好,故制备三效催化剂必须采用复合配方。

铈锆固溶体

 

当前存在的问题及解决方法

 

汽车尾气净化催化剂的使用,有效改善了尾气对大气的污染,但在实践中也暴露出了不少问题,尚有待于进一步深入研究探索。

 

1)催化转化率:当前大多数催化剂高温活性好,低温活性较差,这极大地抑制了其性能。

2)催化剂失效:包括热失效和中毒失效,这也是自汽车尾气催化剂研制以来一直未能妥善解决的问题,高温下催化剂的热劣化和S、P、Pb中毒极大地缩短了催化剂的使用寿命。

3)冷启动问题:汽车尾气中60﹪-80﹪的有毒气体是由于冷启动两分钟内产生的,要有效处理好这个阶段内的废气必须着手改善催化剂的低温活性,以提高尾气的低温催化转化。

4成本问题:当前汽车广泛应用的催化剂大多还是贵金属或贵金属掺杂其它金属氧化物型,其成本仍然很高。

 

目前达到实用化的尾气净化催化剂不外乎贵金属催化剂(氧化型和三元催化剂)和稀土催化剂。而贵金属催化剂在我国现阶段尚不具备推广使用条件,主要原因是价格昂贵,要求使用无铅汽油以及与之相适应的电控喷油系统等汽车技术改造。已经证明稀土催化剂对CO和HC都具有较好的净化效果,抗铅中毒能力强,能满足现有汽车排放标准。特别是我国稀土资源极为丰富,价格便宜,是现阶段适合我国国情的首选催化剂。因此开展以稀土金属为主添加少量贵金属或过渡金属的尾气净化催化剂的研究势在必行,前景广阔。重点应在以下三个方面有所突破:

 

(1)运用组合化学原理,设计具有最佳催化活性的催化剂,开发新材料,提高贵金属的利用率。

(2)开发以粘土矿物为载体的三效催化剂,提高催化剂的耐高温性能,同时,降低生产成本,为催化净化器的产业化开拓道路。

(3)开展非贵金属催化材料体系的研究,以期部分或完全取代贵金属催化剂。

 

每一次国标实施,都带来巨大的发展机遇

 

随着我国汽车工业的快速发展,汽车保有量的持续增加,汽车尾气造成的环境污染也日益严重。近年来,我国制定了越来越严厉的汽车尾气排放标准,采用汽车尾气净化催化剂,极大地减轻了城市的大气污染。

 

与此同时,为了应对更为苛刻的排放标准,汽车产业除了要提高油品的品质,改善发动机的效率外,那就是在催化转换器上做功夫了。一般要么增加催化剂的体积,要么升级催化剂的材料

 

对于柴油车而言,在国四、国五标准下柴油车尾气催化剂主要用钒基SCR,而到国六阶段,未来进一步降低碳氢化合物和颗粒物,需要加装DOC(涂覆氧化铝和贵金属)和CSF(或DPF,涂覆氧化铝和贵金属),分别起到氧化催化和捕捉颗粒物的作用;此外,由于国六对氮氧化物限制要求和测试循环要求提高,原来的钒基SCR 需要进一步升级,涂覆材料升级为沸石(即分子筛)和铜。

 

此外,国六标准下由于对氮氧化物(NOx)排放要求极大提高,导致车用尿素喷射量大幅增加,进而导致氨气泄漏量增加,因此需要加装ASC 催化器将泄漏氨气还原为氮气。

 

于汽油车而言,在国四、国五标准下主要用到三效催化器,国五在国四的基础上体积同样增加约10%,其他相差不大,而到国六标准则需要加装DPF用于颗粒捕捉,整体体积将有所提升。

 

由于环保要求越来越严,每一次的新标准实施后,都给相关产业带来可观的业务增长。可以说,汽车尾气净化催化剂的发展前景十分广阔。